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Abstract
This paper discusses the impact and implications of assuming that a contributor to a tol-
erance stack up or the analyzed variable in a tolerance analysis has a Gaussian or Normal
probability distribution.

1 Introduction

This paper discusses the impact and implications of assuming that a contributor to a tolerance stack
up or the analyzed variable in a tolerance analysis has a Gaussian or Normal probability distribution.

The tolerance analysis system in Enventive depends upon linearization and three basic theorems
from probability theory. When the user performs a tolerance analysis on a derived variable, that
derived variable is considered as a function of the residuals of all the constraints and dimension
constraints which determine the value of the derived variable.

2 Linearization

Let 7; be the residual of the i-th equation, and let d be the derived variable. Then d is some implied
function of the residuals:

d= f(ro,r1, -+ ,"n-1) (1)

This function f(---) is not explicitly constructed in any manner or form, but it is “computed” when
all the residuals r; are equal to zero by solving all the constraints. This function is linearized by
expanding it into its multi-dimensional Taylor’s series [4]:
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where:

e dy is the nominal value for the derived variable, which is the value of the function f(---) when
all the residuals r; are equal to zero,

° % is the partial derivative of the function f(---) evaluated at the nominal geometry when all

the residuals r; are equal to zero, often called the sensitivity coefficient, and
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e HOT stands for Higher Order Terms.

By ignoring the higher order terms, we obtain a linearized approximation to how the derived variable
will respond to changes in the values of the residuals. The tolerance analysis system of Enventive
computes and uses this linearized approximation.

3 Relationship of the Means

The first of the basic theorems from probability theory is that the mean of a linear combination of
random variables is the same linear combination of the means [5]. Assume that each residual r; is a
random variable that has a mean p;, then the linearized approximation, equation (2), to the derived
variable d is a random variable which has a mean® and this mean is pg4:
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Note that each of the random variables r; can have a different probability distribution: one can have
a uniform distribution, another can have a beta distribution, etc. For computing the mean g4, the
only assumption we had to make was that each of the contributor random variables has a mean u;.

4 Relationship of the Variances

The second of the basic theorems from probability theory is that the variance of a linear combination
of independent random variables is a different linear combination of the variances [5]. The variance
of a random variable is simply the square of the standard deviation of that random variable. Assume
that each residual r; is a random variable that has a variance o2, then the linearized approximation,
equation (2), to the derived variable d is a random variable which has a variance? and this variance

is 03:
<n 2
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Note that each of the random variables r; can have a different probability distribution: one can
have a uniform distribution, another can have a beta distribution, etc. For computing the standard
deviation o4 the only two assumptions we had to make were that each of the contributor random
variables has a standard deviation o;, and that each of these random variables is independent of all
the others.

For equation (4) we have assumed that the various residuals are statistically independent. This
assumption is not always correct, for example when the contributor is a true position tolerance.
When this assumption is not correct we have to add numerous co-variance terms to this equation.

INot all random variables have a mean.
2Not all random variables that have a mean also have a variance, but all random variables that have a variance
also have a mean.
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5 The Central Limit Theorem

In equations (3) and (4), if each of the random variables r; has a Gaussian distribution, then
the linearized approximation to the analyzed variable also has a Gaussian distribution. But what
happens when one or more of the random variables r; do not have a Gaussian distribution?

The third of the basic theorems from probability theory is called the Central Limit Theorem
[2], and states that when there are several sensitivity coefficients that are large and approximately
equal, the probability distribution for the derived variable d will be approximately Gaussian even
when these random variables do not have Gaussian distributions.

Thus, when there are more than two contributors with large and approximately equal sensitivity
coefficients, it is safe to assume that the derived variable has a Gaussian distribution. But, when
there are only one or two contributors with large sensitivity coefficients, it is not safe to assume
that the derived variable has a Gaussian distribution unless these contributors also have Gaussian
distributions.

If there are only one or two significant contributors (random variables r;) with large sensitivity
coeflicients which do not have Gaussian distributions, then the computations for the mean and
standard deviation of the derived variable are still accurate, only the fraction of assemblies where
the derived variable will be within its tolerance specification will be inaccurate. If the situation
requires an accurate measure of the fraction which are within tolerance, then we suggest that you
perform a Monte Carlo tolerance stack up analysis.

A simple illustration of the Central Limit Theorem is to compare the probability density functions
for a derived variable which is the sum of one, two, three or more contributors each of which has
a uniform distribution to the probability density function of a Gaussian random variable with the
same mean and standard deviation.

5.1 One Uniform Distribution

A distribution whose probability density function is a constant between the two limits a and b and is
zero outside these limits is called a uniform distribution. Such a distribution has a mean y = (b+a)/2
and a standard deviation o = (b — a)/ V/12. Figure 1 on the following page shows the probability
density function of a derived variable with only one contributor which has a uniform distribution.
This is compared to the probability density function of a Gaussian distribution with the same mean
and standard deviation. The black box is the probability density function for the derived variable,
and the red curve is the bell shaped Gaussian probability density function.

Notice that if the contributor has a uniform distribution over its tolerance specification limits,
then the values u + 30 are considerably outside the limit stack for the derived variable.

5.2 Sum of Two Uniform Random Variables

A derived variable which is the sum of two contributors, each with a uniform random distribution
between the two limits a and b has a triangular shaped probability density function. Such a dis-
tribution has a mean p = (b + a) and a standard deviation o = (b — a)/+/6. Figure 2 on the next
page compares the probability density function of this derived variable with that of a Gaussian dis-
tribution with the same mean and standard deviation. The black triangle is the probability density
function for the derived variable which is sum of two uniform random contributors, and the red
curve is the bell shaped Gaussian probability density function.
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Figure 1: Derived Variable is Sum of One Uniform Contributor
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Figure 3: Derived Variable is Sum of Three Uniform Contributors
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Notice that if the two contributors have uniform distributions over their tolerance specification
limits, then the values p £ 30 are outside the limit stack for the derived variable.

5.3 Sum of Three Uniform Random Variables

A derived variable which is the sum of three contributors each with a uniform random distribution
between the two limits a and b has a bell shaped probability density function. Such a distribution
has a mean p = 3(b+a)/2 and a standard deviation o = (b—a)/v/4. Figure 3 on the preceding page
compares the probability density function of this derived variable with that of a Gaussian distribution
with the same mean and standard deviation. The black curve is the bell shaped probability density
function for the derived variable, and the red curve is the bell shaped Gaussian probability density
function.

Notice that if the three contributors have uniform distributions over their tolerance specification
limits, then the values p + 30 are equal to the limit stack for the derived variable.

5.4 More Than Three Uniform Random Variables

As more contributors are added to the sum, each with a uniform distribution, the probability density
function for the derived variable quickly converges to that of a Gaussian random variable. If there are
more than three contributors and they have uniform distributions over their tolerance specification
limits, then the values p 4+ 30 will be less than the limit stack for the derived variable.

5.5 Conclusions

A major contributor is one whose percent contribution is greater than half that of the contributor
with the largest percent contribution. These major contributors help make the Central Limit Theo-
rem converge to a Gaussian distribution. The remaining contributors contribute little to either the
tolerance stackup or to the convergence to a Gaussian distribution.

If the major contributors are all Gaussian, then the analyzed variable will also have a Gaussian
distribution no matter how many of them there are, especially if there are only one or two such
contributors.

Without making any assumption about the probability distributions of the residuals, if there are
three or more major contributors to the analyzed variable, we can safely assume that the analyzed
variable has a Gaussian distribution. In particular, if there are three or more major contributors
to the analyzed variable, we can assume that only about 0.27% of all assemblies will be outside the
interval pgq £ 304.

If there are only one or two major contributors which do not have a Gaussian distribution, then
the Central Limit Theorem has not converged to the Gaussian distribution, and any results which
rely on the assumption that the analyzed variable has a Gaussian distribution will be inaccurate.
The only results which rely on the analyzed variable having a Gaussian distribution is the fraction
of parts that will be in tolerance.

6 Tolerance Analysis in Enventive

In the Enventive system, the various GD&T tolerance specifications are represented by constraints
(equations) whose residuals r; are the contributors to the tolerance stack up. When all the residuals
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are equal to zero, we have the nominal geometry. Each tolerance specification implies limits on one
or more of the residuals [6].
The tolerance analysis algorithm in Enventive performs the following steps:

1.

The user picks one or more derived variables and asks for them to be analyzed. Usually these
variables are the values of derived dimensions, but any of them can be variables determined
by engineering equations.

of

. The sensitivity coefficients (—) used in equation (2) on page 1 are computed for each variable

or;
to be analyzed. These coefficients are computed using an Automatic Differentiation algorithm
[1]. The function f(---) in equation (1) on page 1 is not explicitly formed.

The tolerance specifications are analyzed [6] and used to determine values for the mean p;
and standard deviation o; of each of the residuals r;. Since Enventive is a preliminary design
tool, we do not ask the user for the value of each mean and standard deviation. Instead, we
determine the mean and standard deviation by assuming that the process which controls each
residual r; is both centered and capable (C, = 1) [3].

Equation (3) on page 2 is used to approximate the mean of each analyzed variable. Any error
in this approximation is caused by the error in the linearized approximation, equation (2) on
page 1.

Equation (4) on page 2 is used to approximate the variance of each analyzed variable. Any
error in this approximation is caused by the error in the linearized approximation, equation
(2) on page 1. Taking the square root of this variance produces the standard deviation of the
analyzed variable.

. The Central Limit Theorem is invoked to assume that each analyzed variable has a Gaus-

sian distribution. This computed mean and standard deviation are used to approximate the
probability that the analyzed variable satisfies its tolerance specification. If there are only one
or two major contributors each of which do not have a Gaussian assumption, then this com-
puted probability that the analyzed variable satisfies its tolerance specification will be highly
inaccurate.
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